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We consider simple cubic lattice systems A in d dimensions with a continuous 
real charge variable q(n) at each lattice site n. These variables are subject t'o a 
mean spherical constraint forcing (Y~,~A q2 (n ) )=  JPAII Q2, where IJAIj is the 
number of lattice sites in A and Q is an elementary charge. The energy of the 
charges comes from interactions with an electrostatic potential, which is the 
solution of a symmetric second-difference Poisson equation on the lattice. Two 
cases are considered, both of which allow the inclusion of the effects of a fixed, 
constant, external electric field. On the lattice A~= [1, N] | a Neumann 
condition is imposed at the surface of the lattice. The lattice A 2 = [ 1 ,  N ] |  
[ - M ,  M ]  | 1) is periodic in each direction ranging over [ - M ,  M]  and has a 
Dirichlet condition imposed at the other two surfaces. On A 2 a finite electric 
field may be applied, while on A 2 a finite potential difference may be applied 
across the lattice. The models are exactly solvable. We study the distribution 
functions on each system and show that they satisfy appropriate forms of the 
first two Stillinger-Lovett moment conditions. The two charge distribution 
functions show screening behavior at high temperature and extreme short range 
at an intermediate temperature To(d), and oscillate as they decay to zero for 
T< To(d). Because of the continuous nature of the charge variables, there is no 
Kosterlitz-Thouless transition in two dimensions. In three dimensions the 
change in the decay behavior of the distribution functions at T <  To(d ) is 
precursor to a phase transition to a charge ordered state, 

KEY WORDS:  Spherical model; Coulombic systems; correlation function 
decay; Stilfinger-Lovett relations. 

1. I N T R O D U C T I O N  

Understanding of the statistical mechanics of Coulombic systems has been 
markedly advanced in recent years by using specific information from the 
properties of the two-dimensional, one-component plasma at coupling 
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F= Q2/kT= 2. This plasma system is useful because its thermodynamics 
and distribution functions may be calculated exactly at F- -  2 in a variety of 
electrostatic boundary conditions. ~ General theory, based on an 
assumption of the BBGKY integral equation hierarchy (8) and, alter- 
natively, based on field-theoretic descriptions of statistical mechanics (9'1~ 
showed that in the bulk of a general Coulombic system at high temperature 
(weak coupling), distribution functions display exact screening. That is, the 
Debye-Hiickel picture of the correlation functions in a weakly coupled dis- 
ordered Coulombic system is qualitatively correct. In the bulk of the two- 
dimensional, one-component plasma at F =  2, the distribution functions 
certainly obey all these screening sum rules. However, the exact results 
showed a variety of decay of distribution functions with distance along 
surfaces.(4 6) These exact results then led to a rigorous analysis of dis- 
tribution functions along surfaces in Coulombic systems. Integral equation 
analysis (11'12) and field-theoretic techniques (~3) then showed that algebraic 
decay of distribution functions along surfaces is a very general property of 
weakly coupled Coulombic systems. 

The power of this single, exactly solvable Coulombic system to 
generate new understanding of Coulombic systems has been quite 
remarkable. Two questions arise. One is whether results on the two-dimen- 
sional, one-component plasma at F =  2 other than screening and slow 
decay at surfaces generalize to other Coulombic systems. The other is 
whether other exactly solvable Coulombie systems can be found to 
generate further general understanding. We report calculations on just such 
a model in this paper. One particular property of the one-component, two- 
dimensional plasma that we examine closely is the decay of the two-particle 
distribution functions. At weak coupling, this is known to be exponential 
on general grounds. ~8'~~ At coupling F = 2  the decay is of the form 
exp( -~pr  2) with p the particle density. At coupling F > 2 ,  Jancovici's 
original solution suggested that a thermodynamic perturbation theory for 
the distribution functions shows that they will oscillate as they decay. The 
correlation length has a minimum at F = 2. The oscillations at F >  2 seem 
to reflect the behavior in the two-component plasma at strong coupling 
and high density, where computer simulations suggest the presence of a 
charge ordered state. ~ 

In this paper we introduce a lattice system with Coulombic inter- 
actions. It is exactly solvable. In each dimension d there is an intermediate 
temperature To(d) which characterizes the decay of truncated charge- 
charge distribution functions. For T>  To(d ) the decay is monotone and 
exponential with a correlation length decreasing with decreasing tem- 
perature. At T =  To(d) the distribution functions have a range of exactly 
one lattice spacing, which represents a correlation length minimum. At 
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T<To(d) the distribution functions decay with oscillations and a 
correlation length that increases with decreasing temperature. This is 
exactly what is seen in the two-dimensional, one-component plasma and 
suggests that this behavior may be fairly general in Coulombic systems. 
Unfortunately, the price of having the system exactly solvable is the 
introduction of a mean spherical constraint on the mean square charge 
magnitudes. While this does make the mean square charges equal to Q2, it 
introduces an extra long-range interaction. Whether the resulting system 
behaves as a "Coulombic" one is important in attempts to generalize the 
properties of the system. The general notion of a spherical model was first 
introduced by Berlin and Kac (16) in an attempt to understand phase 
transitions in Ising-like magnetic models. Their success was remarkable 
and such models have served as very useful examples ever since. We 
introduce our charged spherical model in the same spirit. 

In the general picture of the study of Coulombic systems, charged 
lattice systems have come to play an important role. One example of this is 
seen in studies of the discrete Gaussian model in two dimensions. Up to a 
factor of a nonsingular spin wave partition function, this system has the 
same partition function as a discrete lattice Coulombic system in two 
dimensions. (17"18) The roughening transition in the discrete Gaussian model 
is exactly the Kosterlitz-Thouless transition from a screening plasma to a 
dielectric phase in the discrete Coulomb system. 

Another example is the work of Fr6hlich et aL, 09~ who showed that a 
three-dimensional Coulomb lattice gas could have a transition to a charge 
ordered state at strong coupling. The exactly solvable systems introduced 
here allow us to illustrate many of these phenomena. The Kosterlitz- 
Thouless transition is unfortunately beyond the capacity of the model 
because of the continuous nature of the charge variables introduced. 

Two lattice systems are introduced. The first is A I = [-1, N] | a, with a 
charge q(n)~ ~ at each n~A 1. The second is A2= [1, N] | 
[ - M ,  M] | also with a charge q(n)e N at each neA2. On the lattice 
there are d unit spacing vectors {e~, 1 ~<e~<d} corresponding to a 
translation of one lattice spacing in each possible direction. For a given 
configuration of charges {q(n), neA}, the electrostatic potential ~Uo(n ) 
obeys the Poisson equation 

D 2 ~ o ( n )  = -~oaq(n); n ~ A (1) 

where o~ a is the surface area of the unit sphere in d dimensions. The 
operator D. 2 is given by 

d 

D.RF(n)= ~ [ r ( n + e ~ ) - Z F ( n ) + F ( n - e ~ ) ]  (2) 
~ = 1  
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The boundary condition on A 1 is given as follows. Let n e A1 be a lattice 
vector such that n + G  (or n - G ) 6 A l .  Then ~Uo(n ) is defined for these 
points, too, so that ~U0(n + G ) =  ~o(n) [or ~U0(n- e~)= ~o(n)]. This com- 
pletes the list of values of ~Uo(n ) required in Eq. (1) and means that the 
electric field has zero normal component at the edge of A1. This is a 
Neumann boundary condition on A~. A Neumann boundary condition 
allows a fixed external electric field to be applied to the system. (2~ This 
field is assumed to be of the form E = Eel for convenience and so arises 
from an electrostatic potential 

~l(n) = E�89 1 ) -  (n" el)] E (3) 

The constant term is included to give zero average potential across the 
lattice. 

On lattice A 2 the potential ~o(n) is periodic with period 2 M +  1 in 
each direction e~, 2 < ~ ~< d. In the el direction a Dirichlet condition 

7Jo(n)=0 if n - e l = 0  or N + I  (4) 

applies. The two separated surfaces at n 'e~ = 0  and n ' e l  = N +  1 may be 
set at different potentials + �89 so that an extra potential 

1 V( 2(n" e,)~  l(n)=5 1 (5) 

applies to the system, and gives rise to a constant external electric field 
(V/N+ 1). 

The Hamiltonians for the system take the form 

1 HN(A) = ~  ~ [q(n) ~o(n)+ 2q(n) ~ ( n ) ]  
n~A 

where II/LI is the number of lattice sites. Thus, I I / l l l = N  d, IIA21t= 
(2M+ 1) d - 1  N.  

The fixed elementary charge magnitude for the system is Q, and 2 is a 
parameter whose value is the one that forces the constraint condition 

I~ q2(n))=Q2 llAll (7) 

to hold. These two mean spherical models are analyzed in Section 2, where 
general sum forms for the partition functions, constraint equations, one- 
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and two-charge distribution functions, and the mean square dipole moment 
fluctuation tensor are derived. In Section 3 the constraint parameter 
equations are studied. In particular, it is shown that the value 2 = 0 does 
occur, and that for d~>3 there is a critical coupling beyond which the 
solution 2 for the constraint parameter behaves in a singular way. In Sec- 
tion 4 global sum rules are studied. These are the net charge on the system 
A2, the polarization of the system, and the global first and second 
Stillinger-Lovett sum rules. These sum rules are seen to apply in an 
appropriate way on both lattices. Section 5 studies the one- and two-charge 
distribution functions. The existence of a correlation length minimum is 
demonstrated. This occurs at a particular temperature To(d ) corresponding 
to 2 = 0 .  Above this temperature charges are screened with monotonic 
exponential decay of the two-particle distribution function in the bulk. 
Below this temperature the decay is similar, but is modulated by a sign 
alternation across the lattice. It is shown that in the bulk of the lattice, far 
from the surface, the normal plasma result for the second Stillinger-Lovett 
sum rule holds, as long as the coupling is weak enough to ensure that the 
system has not undergone a phase transition. In Section 6 it is shown that 
for d =  3 there is a transition to a charge ordered state and some of its 
properties are studied. Section 7 concludes with a discussion of the results. 

2. THE SYSTEM AND ITS PROPERTIES 

On A l the operator D.  2 has eigenfunctions of the form 

d 

F(k, n ) =  [ I  f (k~,  n~) (8) 

for kER1 = [0, N -  1] | The f (k ,  n) are given by 

f (k ,  n) = (2/N) 1/2 cos[rck(n - �89 1 <~ n ~ W (9) 

if k r 0, while f (0 ,  n) = N -  l/Z, 1 ~< n ~< N. The corresponding eigenvalues are 
- 2~(k), with 

[, cos( )l 
c~=l  

It is useful below to have r  On A2 the 
operator D.  2 has eigenfunctions of the form 

G(k, n) = ( 2 M +  1) - (d- l ) /2  sin \ N +  11 l-] e x p - -  (11) 
~=2 2 M +  1 
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for k e R 2 = [ 1, N] | [ - M, M] | a 1. The corresponding eigenvalues are 
- 2it(k), with 

( TCkl ) d [ ( 2T~k~ ~] 
q ( k ) = l - c o s  ~ +~--2 1 - c ~  (12) 

It is also useful below to have q*(k) = t/(kel) = 1 - cos(rck/N + 1 ). Note 
that on A1, one of the eigenvalues is zero [4(0)=0] .  None of the eigen- 
values o n  A 2 is zero. As will be seen from the explicit solutions, this means 
that (1) on A2 has a solution for all configurations {q(n), neA2}. On the 
other hand, Eq. (1) on A~ has a solution for a given configuration {q(n), 
n e A 1 } if and only if the charge neutrality constraint 

q(n)=0 (13) 
nCAl 

holds. These solutions may be found by using the unitary transformations: 

and 

on AI: 0(k)= ~ q(n) F(k, n); q(n)= Y' 4(k) F(k, n) (14a) 
n~A1 k~Rl 

onA2: ~(k)= ~ q(n)G*(k, n); q(n)= ~ ~(k) G(k, n) (14b) 
n~A 2 k~R2 

On A I the charge neutrality constraint (13) becomes 

Na/:0(0) = 0 (15) 

On A 1 the potential ~o(n) may be expanded in terms of the F(k, n) and 
their properties as eigenvectors of D~ used to give 

- ~ k i  t~(k) F(k, n) (16) ~o(n)= 2 2 
k6Rl 
k~0 

Here the need for the charge neutrality constraint (15) is obvious, since 
4(0) = 0. The charge-charge interaction contribution to the Hamiltonian is 
then 

1 2 
2 n~dl q(n) ~o(n)= k2E RI 4~(k)goa q2(k ) (17) 

k~s0 

The potential ~Uo(n ) on A2 may be explicitly constructed as 

gO d 
~~ = ~R 2 - ~  0(k) G*(k, n) (18) 

k 2 
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This object exists for all configurations {q(n), n e A2}, since the sums are 
finite, so that all the O(k) always exist, and none of the q(k) are zero. On 
A2, then, the charge-charge interaction energy is 

1 fD d E q(n)~o(n)= Z ~q2(k) 
n~A2 k~R2 

The interaction of the charges with the external field is, on A1, 

(19) 

where 

N - - 1  

q (n )~ ' l ( n )=N a/2 1E.21/2 ~ dl(kel)a(k) (20) 
hEAl k = l  

a(k)= - n  cos n -  = 
,, = l 1 - cos( rck/ N) 

On A2 this interaction energy is 

N 

q(n) ~ l ( n ) = ( 2 M +  1)(J-1)/2(N+ 1) 1/2 V.2L/2 ~ q(kel)b(k) 
n~A 2 k ~ l  

where 

(21) 

(22) 

b(k)= ,=1 N +  1 sin \~--~-]-j = ~  [1 + ( - l f f ]  cot 2(N-~ H (23) 

The Hamiltonians for the two systems may be written as 

keR1 
k ~ O  

+ 21/2 EN IIl1111/2 O(k) A(k)} - 2Q 2 riB1 I1 (24) 

and 

where 

k~R2 

1/2 ) 
{[A2[[ ]-~] 1/~ q(k) B(k)j~ - 2Q z [[A21 [ + 21/2V IN(N+ (25) 

A(k)=a(k)  if k = k e l  with 1 <~k<~N-1 and otherwise A(k)=0,  
and B(k)=b(k)  if k = k e  1 with 1 ~ k ~ N  and otherwise B(k)=0.  On A 1 
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the electric field is E, but on A2 the electric field is V/(N+ 1), which tends 
to zero in the thermodynamic limit. This is a natural consequence of the 
different boundary conditions. These two Hamiltonians contain a term 
)~[~2neA qZ(n) - Q2 I[AI[] to constrain the mean square charges according 
to Eq. (7). 

On A1 the partition function is 

Z(A1)=[~A f~oodq(n)Jf(,,~a q(n))exp[-flH(Al) ] (26) 

and o n  A 2 the partition function is 

Z(A2) = [.[IA2 f_~176 ~ dq(n)]exp[-flH(A2)] (27) 

The transformation {q(n), n ~ Aj} ~ {c)(k), k ~ Rj} is unitary in each case, 
so that its Jacobian is one. The partition functions may thus be evaluated 
immediately, provided that 

2 > -coa/4~(k)  V k e R l \ { O }  onA,  

2 > --COd/4q(k ) Vk E R 2 on A 2 

These bounds are 

onAl: 2 > - c o  a 

on A2: 2 > --r d 

-1 

The constraint equations are 0[log Z(A)]/c?2 =0. The partition functions 
are 

Z(A1)_~N_d/2(~)(IIAtlI-_ 1)/2 k~l~lRl 12 "~- 4---~]('Od 

kr 

1 2 

1/2 

(30) 
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where F =  flQ2 and 

k ~ R2 L_ 4r/(k)J 

• exp { I Z F +  ~ flV2J2()~) 1 '[A211} (31) 

where 
1 N -- 1 a2(k) 

J,(Z) = ~  ,~ ,  2 + ~o~/[4~*(k)] 

J 2 ( ; . )  = 1 b2(k) 
N(N+ 1) , Z + ~a/[4t/*(k)] 

The constraint equations become: on A~, 

Q (D d ) -1 /~r'2 ~Jl(2) 

k~=O 

(32) 

(33) 

(34) 

and on A2, 

k ~ R~ c32 

The one-charge distribution function (q(n)~ depends only on n =n .e~  in 
both cases. The results (and most of those below) are obtained by changing 
q(n) to a sum over O(k) and then performing the resulting Gaussian 
integrals. The results are 

on A~ and 

E ~'~' a(k) cos[(~k/N)(n - �89 
(q(n))  = - ~  g=, )i + - - ~ ~ -  (36a) 

V ~ b(k) sin[nkn/(N+ 1)] (36b) 
(q(n))  = - N +------1 2 + ~a/[&/*(k)] k~l 

on A:. 
The component of the mean dipole of the system in the direction of 

the applied constant external field is, on A ~, 

E N a2(k) 
M1 = N  d ' , = l  ~ n(q(n))  =~-ffk~l= 2+oga/[4~,(k)] N a (37) 
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and, on A2, 

where 

N 
M 2 = (2M+ 1) d 1 2 n(q(n))  

= - v ~  b(k) c(k) ( 2 M +  1) ~ -  ~ 
=1 /~ -~- c o a / [ 4 r / * ( k ) ]  

(38) 

1 N ( z t k n ~ = l  i ~ k )  
c ( k )=N+ 1 ~1= sin \ N +  lJ  - 2  ( -  1)kc~ 2(-----~1) (39) 

Equation (37) shows Mt to be linear in E and (38) shows M2 to be linear 
in V, in the thermodynamic limit, since, as will be seen in Section 3, the 
equations for )o become independent of E(V) in the thermodynamic limit. 

The truncated two-charge distribution function is 

Pc2)(m, n ) :  { (q(m)q(n) )  - (q (m)) (q(n) )} /Q 2 (40) 

The results for P<2)(m, n) do not depend on E (or V), since the parameter 2 
does not depend on E (or V) as just stated. 

On A1 this is given by 

P~z)(m,n) 1 ~ F(k,m) F(k, n) 
= 2 rk  ~R, 2 + ma/[4~(k)] (41) 

k ~ 0  

and on A2 it is given by 

Pi2)(m, n) = 1 ~ G(k, m) G*(k, n) (42) 
2Fk ~R2 2 + ~oa/[4r/(k)] 

The total dipole moment fluctuation tensor is defined by 

1 
a~2)(r) = H--~ E E (rim) e(2)(m, n) (43) 

neA m e A  

Some of the diagonal elements simplify. On A1 

1 N~, aZ(k) 
G~2)(F)~'~' - FN2 ~ =  =1 )~ "~- ogJ[4~*(k)] (44) 

which is independent of ~. Notice from Eq. (37) that G~2)(F)~ on A 1 is 
precisely M~/(FENd). On A2, only the (11) element simplifies this much. 
On A2, then, 

N +  1 ~ c2(k) 
G ( 2 ) ( / ' ) l , 1  -- FN "" 2 + COd/[4q*(k)] (45) k = l  
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A final interesting property to study is the average charge on system 
A;. This is 

U(F)= {.~A2 q(n) ) 

V = - - ( 2 M +  1) (a l)/2 
2 (N+ 1) 

x~ b(k)[1 - ( -  1) k] cot[~k/2(N+ 1)] 
• 

k=lz" 2 + coa/[4~/*(k)] 
(46) 

3. THE C O N S T R A I N T  EQUATIONS 

The constraint equations (34) and (35) show that for small F, 2 is 
large and positive in each case, while for large F, 2 approaches its lower 
bound, which is negative. In this section it will be assumed that 
2> -coSSd. The problem of 2 less than this value arises at the phase 
transition in d =  3. The parameter 

v = 1 + ~oJ4Z (47) 

is of fundamental importance in the work reported below. If 2 > 0, then 
v > 1 and we may define Yo by 

cosh(yo) = v (48) 

If --cod/8d< 2 <0,  then v <  1 - 2 d ,  so that v <  - 1  and thus we may define 
Yo by 

cosh(Yo) = - v  (49) 

We notice that only in the case d =  1, which is not very interesting, can we 
have 

- l < v < 0  

Next we must evaluate the functions J1(2) and J2(,~). From Eqs. (32) 
and (21) we obtain 

N [1 - - ( - -  1 ) k i l l  -Jr-cos(Tck/N)] 
Jl( )~)= 1 ~  ~ (50) 

8~N2 k= (N I) [v-cos(~k/N)J[1 -cos(~k/N)] 
k~0 

This form has been obtained by summing the even summand over 

822/50/3-4 23 
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- -  ( N -  1 ) ~< k ~< N -  1, dividing by two and then including the k = N term, 
which is zero. A similar manipulation gives 

1 N + ,  [l+(_l)k]{l+cos[rck/(N+l)]} ( 5 1 )  

J2(2) = 8N(N+ 1) 2 k=~N v--cos[Tck/(N+ 1)] 

The function p+(~, N ) =  [exp(iN~)+ 1] 1 has simple poles of residue (i/N) 
at ~ = 7tk/N for k odd and is analytic elsewhere in the complex ~ plane. We 
may use this fact to write J~(2) as an integral around the contour C1 
shown in Fig. 1. Using C~ includes a contribution from a pole of the 
integrand at ~ = 0 and this must be subtracted out. The procedure gives 

1 1 I P+(r 
J1(2) = d~ (52) 

co. ~ f c ,  [v-cos(~)][1-cos(~)] 

The function p _ ( ~ , N ) = [ e x p ( i N [ ) - l ]  i has simple poles of residue 
( - i/N) at ~ = 1rk/N for k even and is analytic elsewhere in the complex 
plane. This may be used to give, in the same way, 

v + l s  p _ ( ~ , N + l )  1 (53) 
J 2 ( 2 ) = ~ 3 c ,  v - c o s ( I )  d f f - 4 - ~  

In both cases the contour C1 may now be shifted to C2, which is illustrated 
in Fig. 2 for the two cases v > l  and v < - l .  The parts of C2 with 

= +_re + iy cancel each other (except for the poles at ~ = +~ + iYo when 
v < - 1 )  because the integrand is periodic in ~ with period 2m The parts of 
C2 with im(~)= L include an integrand which is O(e L) and the parts of 
C2 with im(~)= - L  include an integrand which is O(e -(N+I)L) for Jl(2) 

im(z) 

- /1" 

z - p l a n e  

W 0 �9 a 0 g ~re(z  ) 

t't 

Fig. 1. The contour C1. The dotted circles represent the points r~k/N or ~k/(N+l), 
depending on whether system 1 or 2 is being treated. These points are where the sum terms 
come from. 
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Fig. 2. 

ira(Z) 

L 

~-rr K �84 

( )- yo 

-it. 

re(z) 

im(z) 

iL 

4T" 

- i L  

=I 
reCz) 

J 
v~.O ~0 

The contour C2 for v > 1 and for v < - 1 .  Simple poles are represented by heavy dots. 
The poles along the real axis are omitted. 

and O(e -(N+2)L) for J2(2). These contributions tend to zero as L--+ or 
Thus, in both cases the integral around C2 consists entirely of the 
contributions of the poles at cos(f)=v. These may be evaluated fairly 
simply and give 

(57) 
k z / 3 
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Here RN(x)= tanh(x) if N even and RN(X ) = coth(x) if N odd. In both 
cases the function J(Z) is continuously differentiable at Z = 0. Hence we see 
that the term 8Jj(Z)/~2 in the constraint equations is O(t/N). The 
constraint equations are thus 

for A1 and 

2 r =  y: ,l + a; , , /E4{(k) ]  N d ~- 0 (58)  
k e R l  
k # 0  

2 F =  ~ 2+c%/[4 t / (k ) ]  N ( 2 M +  1) a - 1  {-O (59) 
keR2 

on A2. These results indicate that the external electric field does not affect 
the value of 2 in the limit of a large system. We shall see below that this is 
because surface effects screen the electric field from the center of the system. 

We may now study the case 2 = 0. The sums on k are then simple and 
give 

= - -  + O when 2 = 0 (60) 
(O d 

As we shall see below, this is an important intermediate coupling, 
corresponding to coupling F =  2 in the two-dimensional, one-component 
plasma. For 2 > --cod/8d, the function 2(F) is an analytic function of 2 with 
2 = O(1/F) at small F and Z(2d/c%) = 0. For d =  1 or 2, 2(F) --+ -coS8d as 
F -+  oe. For d>~ 3 the situation is more complicated. In the sum on k for 
the constraint equation on A 1, each sum on 0 ~< ks ~< N -  1 may be written 
as a sum on l~=N-k~, so that the sum on k s R 1  with k # 0  becomes a 
sum on leR3 = [1, N ]  |  with l # N 0 =  (N, N, N). For 2 < 0 ,  the constraint 
equation may then be written as 

I # N o  

- cos -I,~1 1 + O (61) 

This sum may be written as an integral when N--+ oo, and for 2 > 2 c =  
-coS8d an analytic function Z(F) results. At 2 = ~.c, o)d/4 L21 = 2d and so 
F = F c with 

8a[ 2g ( dak d+ cosks  - 1  (62) 2Fc(d) = co,t L(2nY J[ ,~,,,3~ ~ =1 
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For F >  Fc(d) the situation is further complicated. Here we must expand 
carefully in powers of N. We have 

2 = --c~ t- zN -a 
8d cos2(g/2N) 

This then gives 

1 
z = (63a) 

2J-r- re(d)] 

On A2 a similar construction for 2 is needed. It gives 

with 

I 
Z 

IRA211 

z = 2 / [F- -  Fc(d)] (63b) 

4. G L O B A L  S U M  RULES 

The first global average we examine is the average total charge on A2, 
given by Eq. (46). The summand here contains a factor b ( k ) [ 1 -  ( -1 )~ ] ,  
and b(k) [see Eq. (23)] contains a factor 1 + ( - 1 )  k, so that the summand 
is zero for all k. Thus, on A2 

U(F) = 0 (64) 

The Dirichlet system carries zero charge on average. One can view this 
result as a consequence of the fact that on A2, ~Ul(n)= �89 2n/(N+ 1)] 
has zero average across the lattice. 

The next object of interest is the mean dipole moment component 
parallel to the applied field. On A~, this is, from Eqs. (37) and (21), 

N [ l _ ( _ l ) k ] [ l + c o s ( g k / N ) ]  (65) 
1 ~ [v - cos(gk/N)] [1 - cosOzk/N)] M1 = EN a 8N2------ ~ k:  (N--  1) 

k r  

This sum may be written as a contour integral using p + (~, N) as with J1(2) 
in Section 3. If the contour C1 is used, then thereis a contribution from the 
pole at ~ = 0, which must be subtracted out. The result is 

[ 1  1 f c p + ( ~ , N )  l+cOS~d~]  (66) 
M l=Er]All]  o~ a 8~N2 ~ v - - - ~ o s ~ l - c o s  
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The integral in Eq. (66) may now be evaluated by distorting the contour C1 
into the contour C2. This gives 

M I =  1 -  1 + tanh Yo for 2 > 0  (67) 
(D d 

Mt = 1 - -  1 + R N for 2 < 0 (68) 
(D d 

From Eqs. (38), (39), and (23), M 2 on A 2 may be written 

V,,A~I,{ N+I l + ( _ l ) k  V+II } 
M 2 - - -  ( l + v )  ~ c o s [ ~ k / ( N + l ) ] - 2 N - 2  (69) 16N2 k= u v -  v-- 

This may be written as a contour integral around C1, using the function 
p_(~, N +  1). The contour may be distorted into C2 and then evaluated. 
The procedure gives 

M2 = -~-~- V IIA211 1 coth @ Yo 
cod,/ 

] - 1  (N+ 1)(v-  1) (70) 

for 2 > 0 and 
2 I(I+ )lJ2RN 

2v ] (71) 
--1 (N+ 1)(v-  1) 

for 2<0 .  
The next global property is the first Stillinger-Lovett sum rule, which 

evaluates 

GI(F, m) = ~ (q(n) q(m)) (72) 
n ~ A  
n @ m  

We may write this as 

n ~ A  n 

Now the last term in Eq. (73) is zero on A~ by the charge neutrality 
constraint [Eq. (13)] and zero on A2 by the result for U(F) [Eq. (64)]. 
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The sum over P(2~(m, n) in Eq. (73) may be evaluated from Eq. (41) or 
(42). On Am, ~,~AI F(k, n)= 0 if k r 0 by the orthogonality conditions on 
the F(k, n), and thus, on Am, 

GI(F, m)=  - (qZ(m))  (74) 

which is an almost trivial result on A1. On A2 a similar manipulation gives 

0 2 G~(F, m)= - (q2(m)) + 
8F(N+ 1)2 

N + I  l _ ( _ _ l ) k  

x ~, cos[$ck/(N+ 1)] 
k= --N ~ - -  

{exp V iztk ~ iTzk [_N+ 1 ( m - 1 ) ] - - e x p  L~-- ~ ( m + l ) ] }  (75) X 

The sum here may be written as a contour integral around C1 using 
p_(~, N+  1). Thus, 

QFz~cp (~, N+ I) Gm(F'm)=-(qe(m))-8 " i v-cos(~) 
(76) 

This contour integral may then be distorted to C2 and calculated, giving 

Q2 sinh{[(N+ 1 ) /2 -m]  Y0} for )~>0 (77) 
GI(F, m)= - (q2(m))  22F sinh[�89 1) Yo] 
and 

Q~ 
Gm(F,m) = -(q2(m))-5]-~(-1)~S(N,m, Yo) for 2 < 0  (78) 

where 

c o s h I ( - ~ + l  m ) Y o ] / c o s h ( - ~  Yo) for Neven 
S(N, m, Yo)= 

s i n h [ ( - ~  1 m)Y0] / s inh ( -~ f -~  Yo) for Nodd 

(79) 

for N large and m close to the center of the system, this gives G~(F, m) = 
-(qZ(m)) .  For m finite, in the limit N---, 0o we obtain 

Qa 
- -  ( q 2 ( m ) )  - -  ~ e -,,,y0 2 > 0 

GI(F, m)= Q2 (80) 
--(q2(m))---~-~(--1)me t a r o  ~ < 0  
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For N +  1 - m = m '  finite in the limit N ~  oo we obtain similar results, 
namely 

G,(F, m ) =  

- (qZ(m)) + ~ e-m'Y~ )~ > 0 
(81) 

_(qZ(m))+(_l)m'2Q__~F2e ,,'r0 4 < 0  

These results show quite explicitly that while deviation from the strict 
neutrality of the counter charge cloud about a given charge is possible, it 
does not occur in the bulk of the system, but is confined to the surfaces. 
The screening length is 1/yo or 1/Yo, depending on whether 2 <> 0. 

The remaining sum rule we consider is the second Stillinger-Lovett 
sum rule, which gives a value to g(zl(F)=traceG(2)(F) on A1 and to 
G(2)(F)11 on A2. On A2, G(2)(F)~ ~ may be identified as MI/(FE[LAII[), 
which is evaluated in Eq. (68). Thus, on A~ 

d [1 1 ( l + - ~ d ) l / 2 t a n h ( 2 Y o )  ] (82) 

for 4 > 0 ,  and for ,~<0 the same form applies, but with RN(NYo/2) 
replacing tanh(�89 In the limit N ~ oo this gives g(z)(F)= d/I'~d, which 
is the correct value for a plasma system with Neumann boundary 
conditions. 

On A2, Eqs. (39) and (45) give 

N+I ~1  l+cos[rck/(N+l)] N+I (83) 
G(z)(F)11 = 8FN----~ K+ -u v cos[rck/(N+ 1)] FNoo d 

The function r(~, N +  1)=  {exp[2i (N+ 1 ) ~ ] -  1} -1 has simple poles of 
residue - i /2 (N+ 1) at ~=nk/N+ 1. Hence Eq. (83) may be written as 

(N+l)ZVv+l(  ] N+I (84) 
G(2)(F)11 = 4rN  l_-5-U  Jc, T-cfs  1 

The integral here may be evaluated by distorting C~ into C2. The result is 

= - -  - -  c o t h [ ( N +  1) Y0] - 1 (85) G(z)(F)11 4FN2 coa/ NFoaa 

for 2 > 0, while for ,~ < 0 this is unchanged except for 11o replacing Yo. This 
means that G(2)(F)li does not exist on A2 in the thermodynamic limit and 
this, too, is to be expected in a system with a Dirichlet boundary condition. 
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5. D ISTRIBUT ION F U N C T I O N S  

5.1. One-Charge Distribution Functions 

On AI, Eqs. (35) and (21) give the one-charge distribution function as 

E n 1 - ( - 1 )  k 

<q(n)> - 8N2k ~ v-cos(~k/N) 
= - ( N -  1) 

• {exp (i__~_ n) + Fi~k -1 (86) 

where n =e l "n .  This may be written as an integral using p_(( ,  N) around 
C~. The contour may then be distorted to C2 and evaluated. Thus 

E sinh{[(N+ 1) /2-n]  Yo} 
<q(n)> = -~-~ sinh(�89 COsh(�89 

for 2 >  0 (87) 

- E ( -  1)" 
<q(n)> -42 cosh(�89 TN(N, n, I1o) for 2 < 0  (88) 

with 

TN(N ,/1, Yo)= 
cosh [ ( N 2  1 

sinh [(~--f  1 

---n) Yo]icosh(Nyo) 

---n) Yo]/sinh(Nyo) 

for N even 

for N odd 

(89) 

In the limit N ~ ~ with n finite, we obtain 

<q(n) > = 

E 
-- ~-~e -~*~ for 2 > 0  

- E ( -1)~  e - ' r~  for 2 < 0  
(90) 

and for n '=  N + 1 - n  finite we find 

<q(N+ l - n ) >  = 

E e - n ,yo 

~ ( _ l ) ~ ' e  ~'ro 

f o r  

for 

2 > 0  

2 < 0  
(91) 
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We see that ( q ( n ) ) = 0  in the bulk of the lattice in the thermodynamic 
limit. At the surfaces these are screened surface charge distributions 
proportional to the electric field, with (in the case 2 > 0) a positive charge 
near n = N +  1, where the external potential is negative, and a negative 
charge near n = 1, where the external potential is positive. Notice that if the 
potential due to this external field were finite as N ~  oo so that 
E =  O(N-1),  we would be able to compare the results directly with those 
below o n  A 2. In that case the surface charges would be small, O(N ~), a 
reflection of the effect of the Neumann boundary condition. 

On A2, the one-charge distribution function is given by Eqs. (36) and 
(23) and these results may be reduced to 

(q(n) )  - 
V N+I ~ '  1 + ( _ 1 ) ~  

8 (N+ 1)2 k=L'N V - -cos[~k / (N+ 1)] 

k N--+t e x P L N + l ( n + l ) ] }  (92) 

Writing this as a contour integral around C1 using p_ (r N + 1), distorting 
the contour to C2, and evaluating the integral gives 

(q(n) )  = 

V sinh{[-(N+ 1 ) / 2 - n ]  Yo} 
22 sinh[�89 1) Y0] 

v ). ro) - ~ ( -  1 l . ( N ,  n, 

for 2 > 0  

for 2 < 0  
(93) 

with 

iN(N, n, Yo)= 
c o s h [ ( - ~ - n )  Y o ] / c o s h ( - ~  Yo) for Neven 

s i n h [ ( - ~ - n )  Y o ] / s i n h ( - ~  Yo) for N o d d  

(94) 

In the limit N --* oo with n finite or n' = N + 1 - n finite these results reduce 
to, for n finite. 

~" - (V/22) e -,yo, 2 > 0 
( q ( n ) ) = [ _ ( V / 2 2 ) ( _ l ) ,  e ,r0, 2 < 0  (95) 

and for n' finite 

((V/22) e ">~ 2 ~ 0 

(q (n ) )  = V/22)(_l), , ,e_,,yo ' 2 > 0  
(96) 
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These results show that in the bulk of the system ( q ( n ) ) = 0  in the ther- 
modynamic limit, because the charge distributions at either end screen the 
system. The magnitude of (q(1))  and (q (N) )  is (V/2).)e -y~ (or e-Y0) and 
this is O(1) in an applied field E =  V/(N+ 1). If the field E were O(1), then 
these would be charge densities O(N + 1) to screen it. This is quite different 
from the case on A~. Here, on A 2 the Dirichlet boundary conditions have a 
much stronger effect on the surface charge densities than do the Neumann 
conditions on A~. 

5.2.  T w o - C h a r g e  D i s t r i b u t i o n  F u n c t i o n s  

Here we use Eqs. (41) and (42). These may be written as 

~F F(k, m) F(k, n) 
P(2)(m, n)= - D2 ~ ~oa/4 +).~(k) (97) 

k ~ R l  

on A l. The usual constraint k ~ 0 has been omitted because D2nF(O, n)= 0. 
On A2 we have 

~F G(k, m) G*(k, n) 
P(2~(m,n)=- D~ ~ ~/4+).~(k) (98) 

k c  R 2 

At 2 = 0, these sums may be evaluated using the orthonormality property 
of the appropriate eigenfunctions. Thus, at F = 2d/co a 

1 a 
P(z)(m'n)=~Sm'" 2d ~ (6m'"+e~+6 . . . . . .  ) (99) 

c ~ = l  

This means that the two-charge distribution function is of range 1 at 
F = No(d) = 2d/o~u. 

On both lattices, in the thermodynamic limit with m and n in the bulk 
interior of the lattice, the two-charge distribution function may be written 
for ) .>0  as 

P(z)(m, n) = p(m - n) 

- 41.2D~(2~) ale d a k e x p [ i k ' ( m - n ) ] a  
rc,~] d ~--~-~c~=l cos(k~) (100) 

where # = d+ e)d/42. For 2 < 0 some rearrangement of the integrals gives 
an alternative form 

1 - a s  da k exp ( - ' i k .m)  I~I ( - 1 )  m~ (101) 
p(m) = ~-f~ D~(2g) =,=33 i#i _--~f=-7 co-~k=)~=, 
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provided 2 is not close to its critical value ;%(d)= -coa/8d, if d~> 3. We 
should remember here that/~ < -d .  Thus, for 2 > 0 and Ira] large 

1 1 f dakexp(ik'm~ (102) 
p(m) ~ - 2--~ D2 (-2~) d coJ22 + k 

since the major contribution to the integral comes from near k = 0. Thus, 

p(m) ~ exp(-ImI/LD+ ) (103) 

where LD+ = (2)~/09d) 1/2. These correlation functions decay monotonically 
with a correlation length that decreases with decreasing temperature until 
F= Fo(d ). For 2 < 0  the correlation function is modulated by a factor 
I-[~a=l(- 1) m' and while 2r  (if d>~3), 

where 

d 

p ( m ) ~  [ I  (--1)m~exp(--lml/LD-) (104) 
a~=l  

: 8 d ~  - 1 / 2  

k coa / COd / 

so that this correlation length increases as the temperature decreases 
further, diverging as 2 ~ 2c(d)= -~d /8d .  

With these thermodynamic limit correlation functions, we may 
consider the quantity 

gsL(r) = ~, n2p(n) (105) 
i1 

which is expected to be -2d/Kco d from the Stillinger-Lovett sum rule. We 
may use the identity x -  1 = ]-~ dt exp( - tx) to obtain 

1 210 o p(n)=  - 4--F--~D dte-"' H I,~(t) (106) 

from Eq. (100), which holds for all 2 > 0 .  The relevant sum of Bessel 
functions that occur in the sum for gsL(F) is (21) 

I,(t)=e t (107) 
n =  --oo 

This gives 

gsL(F) = -2d/codF (108) 
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The manipulations required for 2 < 0 are a little more complicated, but 
they still give Eq. (108). Thus, in both boundary conditions the bulk of the 
system has correlations that obey the standard form of the second 
Stillinger-Lovett sum rule. (11~ 

6. T H E  C H A R G E  O R D E R E D  P H A S E  IN T H R E E  D I M E N S I O N S  

In this section we consider d =  3 and concentrate to begin with on the 
model on A2. We are concerned with the bulk properties of the system. 
From Eq. (29) the critical value of 2 is 2c(3)= -o)3/4t/(ko) , where ko= 
(N, M, M), and thus in the thermodynamic limit, t/(ko) = 6. The parameter 
)~ is then, for F~> F,.(3) 

2 = 2c(3) + z/IFA3lJ (109) 

where z = 2~IF- Fc(3)] [Eq. (63b)]. In the sum in Eq. (42) for P(2)(m, n) 
with F>Fc(3) ,  the contributions of the four-vectors k with t/(k)=t/(k0) 
must be separated off and treated differently. We define, for vectors n o = 
(TN, 0, 0) and mo = no + m, 

p(m, 7)= lim P(z)(mo, no)=p~ 7)+p(m) (110) 
IIA2rl ~ oo 

where p~ 7) is the contribution from the four-vectors k with r/(k)= 
r/(ko). The limit is taken with 0 < 7 < 1 and 7N an integer. First we have 

3 

P~ 7)=(l-T/T~)[1-c~ 1-I ( - 1 )  m~ (111) 

The remainder of the two-charge distribution function is, after taking the 
thermodynamic limit and rearranging the integrand, 

3 ( 2 ~ f  e x p ( - i k ' m )  6 2 (112) p(m) = - 093-----~Dm I ]  ( - 1 )met d3k cos(k~) 
c~=l [- . . . .  ]3 3 - - Z 3 = l  

This may be estimated for large Iml by expanding the integrand about 
k =0,  since the small-lkl region dominates the integral at large [ml. This 
gives 

9 3 
~-I (--1) m~ (113) p(m) n2FIml ~=1 

Thus, for F>Fc(3) ,  the three-dimensional system develops long-range 
order: charges oscillate in sign across the lattice. The correlation length 
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remains infinite, which is characteristic of spherical models. The critical 
exponent for the order parameter is fl = 1 ~, as expected. The value of the 
order parameter varies on a thermodynamic scale across the lattice, as can 
be seen from E q . ( l l l ) .  The factor [1 -cos (2 rc? ) ]  there reflects the 
amplitude [G(k0, m)[ 2 of the eigenvectors selected out by the constraint 
equation when F>F~(d). On A1 a similar behavior is seen with no= 

(71, "]2, 73) N, m o =  no + m, and 

p(m, 7 ) =  lim Pr no)=p~ (114) 
qlAlll ~ ov 

The only change is that 
3 

P(m,'l)=(1-T/Tc) ]-I [(--1)m~(1 +COS2n?=)] (115) 
a = l  

and the condensed phase and order parameter are modulated in all three 
directions. It is interesting to evaluate 

gSL(?) = ~ m2p( m, 7) (116) 
Ill 

This is not possible: the sums do not converge. However, since these bulk 
two-charge distribution functions have orientational symmetry, we may 
consider 

gsL(Y) = lira ~, m2p(m, 7) exp( - -pm 2) (117) 
p ~ 0  m 

The relevant sums may be evaluated using the 0-function formula 

exp(imq-#m2)=(zc/tO 1/2 ~ exp[-(n+q/ZzO2/I.t] (118) 

The sum ofp~ ?) then gives zero in the limit # ~ 0, since only the value 
q = z~ is relevant. The sum over p(m) may be evaluated in the same way, 
and the integral evaluated asymptotically at small #. This gives 

gSL(?) = lim -- 277z4/~/4F= 0 (119) 
# ~ 0  

Thus, the condensed system has no susceptibility, corresponding to a 
dielectric constant e = 1 throughout the bulk of the sample. 

7. D I S C U S S I O N  

The systems introduced in this paper do behave as Coulombic plasma 
systems. They screen external electric fields from the center of a thermo- 
dynamically large system, and the screening is exponentially fast. The 
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systems obey the first and second Stillinger-Lovett relations in the interior 
when the thermodynamic limit is taken. The system susceptibility [g~2)(F) 
on A1, G~2)(F)11 on A2] obeys the appropriate form of the Stillinger- 
Lovett relation for the electrostatic boundary conditions applying. At weak 
coupling the charge-charge distribution functions show exponential decay 
with distance, with the correlation length decreasing as the coupling F 
increases. These observations establish that we are dealing with Coulombic 
systems of good standing. The spherical constraint introduces an extra 
long-range interaction, but this does not interfere with the Coulombic 
nature of the systems. 

The coupling constant F separates into three ranges, (i) 0 < F <  Fo(d); 
(ii) Fo(d ) < F <  Fc(d); (iii) Fc(d ) < F. The third range only occurs in d~> 3. 
For 0 < F <  Fo(d) = 2d/coa, the charge-charge correlation function behaves 
as in a weakly coupled plasma. At F =  Fo(d) the two-charge distribution 
function has a range of one lattice spacing, which corresponds to a 
correlation length minimum. On Fo(d)<F<Fc(d)  [or Fo(d)< F for 
d=  1, 2], the two-charge distribution function oscillates in sign and decays 
exponentially with a correlation length that increases as F increases. For 
d>~ 3 this correlation length diverges as F---, Fc(d) from below. This feature 
of the distribution function suggests that the coupling F=Fo(d) 
corresponds to coupling F = 2  in the one-component, two-dimensional 
plasma. There the correlation function also seems to display a minimum in 
its correlation length, with monotonic decay of correlations for F <  2 and 
oscillatory decay for F > 2 .  Finding this behavior in both types of model 
suggests that it may be a general feature of Coulombic systems. It should 
be noted that in spite of the change in the behavior of the two-charge 
distribution functions, there is no singularity in the thermodynamic 
behavior, neither in these spherical models nor in the two-dimensional, 
one-component plasma. 

These charged spherical models are not complete guides to the 
behavior of Coulombic systems. They do not have a Kosterlitz-Thouless 
transition in two dimensions, because the charge variables are continuous. 
In three dimensions they produce a somewhat strange dielectric phase, 
apparently with dielectric constant e = 1. One way of interpreting this is to 
say that the system cannot develop any local dipole moment density when 
in its condensed phase. It is clear at least that it is difficult to define the 
response of the bulk interior of these systems to an applied external field 
because any external field is automatically screened by the surface layers. 
Unfortunately, it is not possible to see slow decay of distribution functions 
along surfaces in these models. Their boundary conditions correspond to 
zero and infinite external dielectric constants, and in those cases no slow 
decay of distribution functions is expected/22'23) 
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One feature of spherical models in general is that the spherical con- 
straint spreads inhomogeneities out over thermodynamically large volumes. 
In the nearest neighbor spherical Ising-spin model, the two-phase interface 
is delocalized. (24) We see a similar spreading with the dependence of 
P~ 7) on 7. Nonetheless, we notice that there are localized surface effects 
in these systems: the surface charge densities are localized exponentially at 
the system surfaces. 

The models introduced in this paper can be expected to give some 
guide to the behavior of Coulombic systems in general. In particular they 
allow extensions to the case where the system is confined by walls of some 
dielectric material with dielectric constant other than O(AI) or oe(A2). 
Work on these problems is now in progress. 
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